skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Samara, Evangelia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract EUropean Heliospheric FORecasting Information Asset (EUHFORIA) is a physics‐based data‐driven solar wind and coronal mass ejections (CMEs) propagation model designed for space weather forecasting and event analysis investigations. Although EUHFORIA can predict the solar wind plasma and magnetic field properties at Earth, it is not equipped to quantify the geo‐effectiveness of the solar transients in terms of geomagnetic indices like the disturbance storm time (Dst) index and the auroral indices, that quantify the impact of the magnetized plasma encounters on Earth's magnetosphere. Therefore, we couple EUHFORIA with the Open Geospace General Circulation Model (OpenGGCM), a magnetohydrodynamic model of the response of Earth's magnetosphere, ionosphere, and thermosphere to transient solar wind characteristics. In this coupling, OpenGGCM is driven by the solar wind and interplanetary magnetic field obtained from EUHFORIA simulations to produce the magnetospheric and ionospheric response to the CMEs. This coupling is validated with two observed geo‐effective CME events driven with the spheromak flux‐rope CME model. We compare these simulation results with the indices obtained from OpenGGCM simulations driven by the measured solar wind data from spacecraft. We further employ the dynamic time warping (DTW) technique to assess the model performance in predicting Dst. The main highlight of this study is to use EUHFORIA simulated time series to predict the Dst and auroral indices 1–2 days in advance, as compared to using the observed solar wind data at L1, which only provides predictions 1–2 hr before the actual impact. 
    more » « less
  2. Abstract A plethora of coronal models, from empirical to more complex magnetohydrodynamic (MHD) ones, are being used for reconstructing the coronal magnetic field topology and estimating the open magnetic flux. However, no individual solution fully agrees with coronal hole observations and in situ measurements of open flux at 1 au, as there is a strong deficit between the model and observations contributing to the known problem of the missing open flux. In this paper, we investigate the possible origin of the discrepancy between modeled and observed magnetic field topology by assessing the effect on the simulation output by the choice of the input boundary conditions and the simulation setup, including the choice of numerical schemes and the parameter initialization. In the frame of this work, we considered four potential field source surface-based models and one fully MHD model, different types of global magnetic field maps, and model initiation parameters. After assessing the model outputs using a variety of metrics, we conclude that they are highly comparable regardless of the differences set at initiation. When comparing all models to coronal hole boundaries extracted by extreme-ultraviolet filtergrams, we find that they do not compare well. This mismatch between observed and modeled regions of the open field is a candidate contributing to the open flux problem. 
    more » « less
  3. Abstract Many scientists use coronal hole (CH) detections to infer open magnetic flux. Detection techniques differ in the areas that they assign as open, and may obtain different values for the open magnetic flux. We characterize the uncertainties of these methods, by applying six different detection methods to deduce the area and open flux of a near-disk center CH observed on 2010 September 19, and applying a single method to five different EUV filtergrams for this CH. Open flux was calculated using five different magnetic maps. The standard deviation (interpreted as the uncertainty) in the open flux estimate for this CH ≈ 26%. However, including the variability of different magnetic data sources, this uncertainty almost doubles to 45%. We use two of the methods to characterize the area and open flux for all CHs in this time period. We find that the open flux is greatly underestimated compared to values inferred from in situ measurements (by 2.2–4 times). We also test our detection techniques on simulated emission images from a thermodynamic MHD model of the solar corona. We find that the methods overestimate the area and open flux in the simulated CH, but the average error in the flux is only about 7%. The full-Sun detections on the simulated corona underestimate the model open flux, but by factors well below what is needed to account for the missing flux in the observations. Under-detection of open flux in coronal holes likely contributes to the recognized deficit in solar open flux, but is unlikely to resolve it. 
    more » « less
  4. Aims : This paper presents a H2020 project aimed at developing an advanced space weather forecasting tool, combining the MagnetoHydroDynamic (MHD) solar wind and coronal mass ejection (CME) evolution modelling with solar energetic particle (SEP) transport and acceleration model(s). The EUHFORIA 2.0 project will address the geoeffectiveness of impacts and mitigation to avoid (part of the) damage, including that of extreme events, related to solar eruptions, solar wind streams, and SEPs, with particular emphasis on its application to forecast geomagnetically induced currents (GICs) and radiation on geospace. Methods : We will apply innovative methods and state-of-the-art numerical techniques to extend the recent heliospheric solar wind and CME propagation model EUHFORIA with two integrated key facilities that are crucial for improving its predictive power and reliability, namely (1) data-driven flux-rope CME models, and (2) physics-based, self-consistent SEP models for the acceleration and transport of particles along and across the magnetic field lines. This involves the novel coupling of advanced space weather models. In addition, after validating the upgraded EUHFORIA/SEP model, it will be coupled to existing models for GICs and atmospheric radiation transport models. This will result in a reliable prediction tool for radiation hazards from SEP events, affecting astronauts, passengers and crew in high-flying aircraft, and the impact of space weather events on power grid infrastructure, telecommunication, and navigation satellites. Finally, this innovative tool will be integrated into both the Virtual Space Weather Modeling Centre (VSWMC, ESA) and the space weather forecasting procedures at the ESA SSCC in Ukkel (Belgium), so that it will be available to the space weather community and effectively used for improved predictions and forecasts of the evolution of CME magnetic structures and their impact on Earth. Results : The results of the first six months of the EU H2020 project are presented here. These concern alternative coronal models, the application of adaptive mesh refinement techniques in the heliospheric part of EUHFORIA, alternative flux-rope CME models, evaluation of data-assimilation based on Karman filtering for the solar wind modelling, and a feasibility study of the integration of SEP models. 
    more » « less
  5. This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere. 
    more » « less